Приборы многоточечного

мониторинга электроэнергии

КСМ-М2

Руководство по эксплуатации 4221-006-78481029-2021 РЭ2

Благодарим Вас за выбор приборов многоточечного мониторинга электроэнергии КСМ-М2 торговой марки КС[®]. Перед началом эксплуатации внимательно изучите настоящее руководство.

ВНИМАНИЕ!

- Установка и обслуживание должно выполняться только квалифицированными специалистами.
- Перед выполнением электромонтажных работ выключите питание системы и все входные сигналы и замкните вторичные обмотки измерительных трансформаторов тока.

• Убедитесь в отсутствии напряжений на выводах при помощи подходящего измерительного прибора.

- Параметры входных сигналов должны находиться в допустимых пределах.
- Следующие причины могут привести к поломке или неправильной работе:
- Выход частоты и напряжения питания за пределы рабочего диапазона.
- Неправильная полярность подачи входного тока или напряжения.
- Другие ошибки подключения.
- Отключение проводов от порта связи или их подключение во время работы

Запрещается прикасаться к клеммам работающего прибора!

Оглавление

1.	Введен	le	4
	1.1	Описание	4
2.	Характ	ристики	5
3.	Монтаж		7
	3.1	Габаритные размеры	7
	3.2	Схема соединений и подключения	7
	3.3	Установка модулей системы	8
4.	Измере	ия и настройка	8
	4.1	Лицевая панель модуля	8
	4.2	Описание кнопок модуля измерительного КСМ-М2	9
	4.3	Измерения	10
	4.4	Измерения в реальном времени	10
	4.5	Учет электроэнергии	10
	4.6	Многотарифный учет электроэнергии	11
	4.7	Меню	12
	4.7	Структура меню настроек	12
	4.7	2 Пункты меню и значения уставок	14
	4.7	В Настройка параметров входных сигналов	16
	4.7	Настройка порта связи RS-485	16
5.	Функци	I	17
	5.1	Порт RS-485, протокол Modbus RTU	17
	5.1	Физический уровень	17
	5.1	2 Протокол MODBUS-RTU	17
	5.1	Форматы сообщений поддерживаемых команд	17
	5.2	Импульсный выход	18
6.	Способ	ы их устранения	19
-	6.1	Связь	19
	6.2	Прибор не работает	19
	6.3	Прибор не реагирует на ваши действия	19
	6.4	Другие неисправности	19
7.	Технич	ское обслуживание и ремонт	19
8.	Маркир	овка и пломбирование	19
9.	Гарантии		

1. Введение

1.1 Описание

Приборы многоточечного мониторинга электроэнергии модульные КСМ-М2 (далее - приборы) предназначены для измерений напряжения, тока, электрической мощности, электрической энергии (технический учет) в электрических сетях постоянного тока.

Принцип действия приборов основан на измерениях мгновенных значений напряжения и силы тока, преобразовании результатов измерений в цифровую форму при помощи АЦП, дальнейшей их обработке и отображении результатов измерений на дисплее, также имеется дополнительная возможность настройки приборов с помощью кнопок управления на лицевой панели через систему меню. Управление процессом измерений осуществляется при помощи микропроцессора.

Также настройка и просмотр результатов измерений осуществляется с помощью внешнего ПК через интерфейс связи RS-485.

Приборы имеют компактные размеры и просты для монтажа и являются хорошим решением для мониторинга параметров электроэнергии в промышленных и прочих применениях.

Структура условного обозначения прибора приведена на рисунке 1.1.

КСМ-M2-1-0-1- Номинальное напряжение или коэффициент трансформации

Номинальный ток или коэффициент трансформации

Рисунок 1.1 Структура условного обозначения модификации КСМ-М2

В таблице 1.1 приведены измеряемые величины и технические особенности прибора.

	ЖК-индикатор	
	Установка на Din-рейку	
Вионний рид	Интерфейс RS-485	1
Внешний вид	Импульсный выход	1
	Подключение с использованием внешнего шунта с	
	номинальным напряжением 75 мВ	
Питание		
	Напряжение постоянного тока	
Измерение	Измерение силы постоянного тока	
	Электрическая мощность постоянного тока	
Учет	Учет Электрическая энергия постоянного тока в обоих	
электроэнергии направлениях (ЕР, ЕР-)		-

Таблица 1.1 Измеряемые величины и технические особенности прибора

Общий вид прибора представлен на рисунке 1.2.

Рисунок 1.2 Общий вид модуля измерительного КСМ-М2

2. Характеристики

Технические характеристики прибора КСМ-М2 приведены в таблице 2.1.

таолица 2.1. технические характеристики присорое	Таблица 2.1.	Технические	характерист	гики приборов
--	--------------	-------------	-------------	---------------

Параметры окружающей среды		
Нормальные условия измерений:		
- температура окружающего воздуха, °С	от +10 до +30	
- относительная влажность воздуха, %	от 30 до 80	
Рабочие условия измерений:		
- температура окружающего воздуха, °С	от –20 до +70	
- относительная влажность воздуха, %	95 при +35 °С	
Условия хранения:		
- температура окружающего воздуха, °С	от -40 до +85	
- относительная влажность воздуха, %	95 при +35 °С	
Надежн	ЮСТЬ	
Средняя наработка на отказ, тыс. ч	70000	
Средний срок службы, лет	10	
Межповерочный интервал, лет	4	
Параметры электрического питания		
- напряжение переменного и постоянного тока, В	от 80 до 270	
- частота переменного тока, Гц	45-65	
Мощность, потребляемая от источника питания	5	
не более, ВА		
Напряжение пробоя не менее, кВ	2	
Входы напряжения		
Диапазон, В	0-1000	
Разрешающая способность, В	0,1	
Сопротивление измерительного входа	1,7 /фаза	
напряжения не менее, МОм		
Перегрузка, %	Постоянная :120	
Частота входного сигнала, Гц	45-55	
Входы тока		
Шунт, мВ	75	
Сопротивление измерительного входа тока, не более, мОм	20/ фаза	

Перегрузка по току, %	Постоянная: 120
Частота входного сигнала, Гц	45-55
Импульснь	ый выход
Ширина импульсов, мс	80±20 %
Максимальное напряжение, В	35
Максимальный ток, мА	10
Частота импульсов не более, Гц	10
Коммуникационн	ный интерфейс
Тип интерфейса	RS-485
Скорость обмена не более, бит/сек	38400
Протокол связи	Modbus-RTU
Напряжение пробоя изоляции, В	~2000
Длительность, с	60

Номинальные значения измеряемых входных сигналов для прибора КСМ-М2 приведены в таблице 2.2.

Таблица 2.2 Номинальные значения измеряемых входных сигналов для приборов КСМ-М2

Наименование характеристики	Значение
Номинальное напряжение постоянного тока (U _н), В	1000
Номинальное напряжение постоянного тока по цепи тока при	
использовании внешнего взаимозаменяемого шунта с номинальными	75
значениями силы постоянного тока (I _н) в диапазоне от 1 до 15000 А ¹⁾ , мВ	
Номинальная мощность постоянного тока (Р _н), Вт	U _H ·I _H

Примечание:

1) Номинальная сила постоянного тока шунта устанавливается в меню прибора.

Значение основных и дополнительных погрешностей приборов КСМ-М2 приведены в таблицах 2.3 и 2.4.

таолица 2.3 эпачение основных погрешностей приооров Ком-мг	Таблица 2.3 Значение основных	погрешностей прибо	ров КСМ-М2
--	-------------------------------	--------------------	------------

Наименование характеристики	Диапазон	Пределы
	измерений	допускаемой
		основной
		погрешности ¹⁾
Напряжение постоянного тока, В	от ±0,015·Uн до ±1,0·Uн	γ = ±0,5 %
Сила постоянного тока, А	от ±0,01·Ін до ±1,0 Ін	γ = ±0,5 %
Мощность постоянного тока, Вт	от ±0,015·Uн до ±1,0 Uн от ±0,01·Iн до ±1,0 Iн	γ = ±0,5 %
Электрическая энергия постоянного тока в обоих направлениях активная (EP, EP-), Вт [.] ч ²⁾	от ±0,015·Uн до ±1,0·Uн от ±0,01·Ін до ±1,0·Ін	δ = ±1,0 %

Примечание:

1) Обозначение погрешностей: Δ – абсолютная; δ, % – относительная; γ, % – приведенная.

Таблица 2.4 Значение допускаемых дополнительных погрешностей

Наименование	Диапазон значений влияющей	Пределы допускаемой
влияющей величины	величины	дополнительной погрешности
Изменение температуры окружающего воздуха	от –20 °C до +10 °C не включ.; св. +30 °C до +70 °C	0,5 предела допускаемой основной погрешности на каждые 10 °C
Изменение относительной влажности воздуха от нормальной	св. 80 % до 95 % (при температуре +35 °C)	пределы допускаемой основной погрешности

Примечание:

При изменении напряжения питания в заданных пределах погрешность измерений находится в пределах допускаемой основной погрешности измерений соответствующей физической величины

Габаритные размеры и масса модулей приборов представлены в таблице 2.5

Наименование прибора	Габаритные размеры (длина×высота×глубина), мм	Масса, кг, не более
Модуль КСМ-М2	72×90×63,5	0,25

Таблица 2.5 Габаритные размеры и масса модулей приборов

3. Монтаж

3.1 Габаритные размеры

Внешний вид, габаритные размеры модуля измерительного КСМ-М2 показана на рисунках 3.1.

Рисунок 3.1 Внешний вид и габаритные размеры модуля измерительного КСМ-М2

3.2 Схема соединений и подключения

На рисунке 3.2 показана схема подключения модуля измерительного КСМ-М2.

Рисунок 3.2 Схема подключения модуля измерительного КСМ-М2

3.3 Установка модулей системы

Установка модуля измерительного КСМ-М2 показана на рисунке 3.3.

Рисунок 3.3 Установка модуля КСМ-М2

4. Измерения и настройка

Прибор многоточечного мониторинга электроэнергии КСМ-М2 можно настраивать и просматривать результаты измерений с помощью цифрового порта связи RS-485 на компьютере, также есть возможность дополнительно просматривать на ЖК-индикаторе измеряемые величины, настраивать прибор с помощью четырех кнопок на лицевой панели. Настройка прибора с лицевой панели осуществляется через меню.

4.1 Лицевая панель модуля

Рисунок 4.1 Лицевая панель модуля измерительного КСМ-М2

1 – Индикатор питания. Горит, когда на прибор подано питающее напряжение

2 – Сегментный ЖК дисплей. Служит для отображения результатов измерения, просмотра и настройки параметров прибора.

3 – Четыре кнопки управления. Предназначены для просмотра результатов измерения, просмотра и настройки параметров прибора.

4.2 Описание кнопок модуля измерительного КСМ-М2

Обозначение на кнопке	Функция кнопки
<	Кнопка влево. Служит для выбора предыдущей опции, предыдущей страницы, а также для изменение параметров и смещения разряда в числе.
٨	Кнопка вверх. Служит для выбора следующей опции, следующей страница, а также для изменения параметра.
Меню	Предназначена для возврата к предыдущему разделу меню и для прямого перехода разделу настроек.
◄┛	Подтверждение выбранной опции

Изменение числового значения:

Кнопкой < переместите указатель к требуемому разряду числа, затем кнопкой Λ увеличьте число в данном разряде.

Вход в меню настроек:

В режиме просмотра параметров нажмите кнопку Меню и удерживайте более 3 секунд. На

экране измерителя появится надпись **rEAd**, с помощью клавиш < или $^{\Lambda}$ выберите **ProG**; нажмите \checkmark , чтобы войти в меню ввода пароля; введите пароль (пароль по умолчанию 0001) с помощью клавиш < и н $^{\Lambda}$, нажмите \checkmark , чтобы войти в меню настроек, если введен верный пароль.

Выход из меню настроек:

В случае изменения настроек в разделе меню третьего уровня, нажмите подтверждения изменений или нажмите **Меню** для отмены изменений. Нажмите клавишу **Меню** для возврата к разделу меню первого уровня. Нажмите еще раз **Меню**, на экране появится надпись **SAVE – no.** Далее возможны три варианта:

1) Выход без сохранения настроек: нажмите клавишу 🗲

2) Выход с сохранением настроек: нажмите клавишу < или ∧, чтобы выбрать SAVE – по и нажмите клавишу ← .

3) Возврат в меню настроек: нажмите клавишу Меню.

4.3 Измерения

Измеренные величины отображаются на ЖК-дисплее устройства. Структура меню измерений следующая:

4.4 Измерения в реальном времени

Прибор позволяет отображать на экране токи, напряжения, мощность, коэффициент мощности, энергию. Некоторые параметры могут быть переданы только по цифровому интерфейсу связи.

В режиме измерения можно просматривать страницы прибора при помощи кнопок < и ^ назад и вперед соответственно.

Ниже в качестве примера перечислены все страницы прибора с измерениями, производимыми в реальном времени.

רם22	Напряжение постоянного тока U=220,7B
5.0 12 [^]	Постоянный ток I=5,012A
5700"*	Суммарная активная мощность Р=5700Вт

4.5 Учет электроэнергии

Приборы позволяют производить учет активной энергии в двух направлениях

Отображаемые электрические величины являются первичными величинами. Они получены умножением вторичных величин на коэффициенты трансформации тока/напряжения. Все

электрические параметры основаны на вторичных величинах, как базе отсчета. Минимальное значение накопленной энергии по вторичной стороне 1Втч или 1варч, а минимальное отображаемое значение электроэнергии 0,001кВтч или 0,001кварч по первичной стороне.

Максимальное значение накопленной энергии по вторичной стороне 4294967295 Втч, а максимальное отображаемое значение электроэнергии 9999999999 кВтч (99,9 миллиардов кВтч) по первичной стороне.

При нормальной эксплуатации прибора невозможно переполнение счетчиков. Пользователи при необходимости могут производить сброс накопленных данных.

["EP ** / 0570 1000	Суммарная активная энергия в прямом направлении EP=5701 кВтч
EP - * * * .:0796 7.000	Суммарная активная энергия в обратном направлении EP-=7967 кВтч

4.6 Многотарифный учет электроэнергии

Для учета электроэнергии по нескольким тарифам приборы содержат 2 набора по 12 временных интервалов (периодов) и 4 тарифа. При настройке используется номер тарифа, чтобы указать скорость, с которой работает счетчик. Номера тарифов 1, 2, 3 и 4. 1 тариф – быстрые изменения потребления, 2 тариф – пиковое потребление, 3 тариф – продолжительное потребление с минимальными отклонениями и 4 тариф – снижение потребления.

24 часа каждого дня могут быть разбиты на 12 временных интервалов (периодов) и для каждого интервала устанавливается один из 4 тарифов. Период времени должен быть непрерывным. Это означает, что время окончания первого периода времени является временем начала второго и т.д.

Данные многотарифного учета активной энергии хранятся за последние 12 месяцев. На экране может быть отображена суммарная активная энергия по 4 тарифам за текущий месяц, прошлый месяц, позапрошлый месяц.

" <i>ERP</i> w ^k 000 1 ~ 9.862	Суммарная активная энергия в прямом направлении EA.P= 19.862 кВтч
"ERP 1#k) 0000~ 5944	Суммарная активная энергия в прямом направлении по тарифу Р1 EA.P1= 5.944 кВтч
" <i>ERP2</i> ** 0000 - 1425	Суммарная активная энергия в прямом направлении по тарифу Р2 EA.P2= 1.425 кВтч
"ERP3"" 0001- 0.526	Суммарная активная энергия в прямом направлении по тарифу Р3 EA.P3= 10.526 кВтч
"ERP4"*) 0000- 2016	Суммарная активная энергия в прямом направлении по тарифу Р4 EA.P4= 2.016 кВтч
"EOP " ^k " 0000 ~ 3.486	Суммарная активная энергия за текущий месяц E0.P = 3.486 кВтч

"E0P 1wh 0000~ 2.43 1	Суммарная активная энергия за текущий месяц по тарифу Р1 E0.P1 =2.431 кВтч
" <i>E0.P2</i> ** 0000 ~ 0.000	Суммарная активная энергия за текущий месяц по тарифу Р2 E0.P2= 0.000 кВтч
" <i>EQP3</i> w ^k 0000~ (435	Суммарная активная энергия за текущий месяц по тарифу Р3 E0.P3 = 1.435 кВтч
"Е <u>О</u> РЧ _w ^k 0000 ~ 0.000	Суммарная активная энергия 1 за текущий месяц по тарифу Р4 E0.P4=0.000 кВтч
Ë (P *** 0000 ~ 0.000	Суммарная активная энергия за прошлый месяц E1.P =0.000 кВтч
" <i>E2P</i> "** 0000~ 0.190	Суммарная активная энергия за позапрошлый месяц E2.P =0.190 кВтч
12.02 03.16 36.55°	Время 03 февраля 2012г 16:36:55

4.7 Меню

4.7.1 Структура меню настроек

Меню настроек имеет иерархическую структуру. Структура меню настроек системы показана на рисунке 4.3.

Рисунок 4.3 Структура меню настроек

4.7.2 Пункты меню и значения уставок

Пункты меню описаны в следующей таблице 4.2

Таблица 4.2 Пункты меню и значения уставок

Первый	Первый уровень меню		торой уровень меню	Третий уровень меню						
Символ	Значение	Символ	Символ	Значение	Символ					
595	Системные	EodE	Пароль	00009999	Заводская установка: 0001.					
	настройки	ЕЧЕ	Режим циклического отображения показаний	YES, NO	NO: выключено YES: включено					
		ELr.E	Очистка счетчиков энергии	YES, NO	NO: Не очищать YES: Очистить все данные					
		ELr.d	Обнуление потребления	YES, NO	NO: Не очищать YES: Очистить все данные					
		ELr.n	Обнуление записи	YES, NO	NO: Не очищать YES: Очистить все данные					
InPE	Параметры входных сигналов	PE. I	Номинальное напряжение первичной цепи	09999	Напряжение первичной цепи					
		EE LI	Номинальный ток первичной цепи	09999	Ток первичной цепи					
							PE. 2	Номинальное напряжение вторичной цепи	1000	Напряжение первичной цепи (фиксированное значение, не может быть изменено)
		CE 12	Номинальный ток вторичной цепи	0.075	Ток вторичной цепи (фиксированное значение, не может быть изменено)					
Eon I	Параметры порта	Addr	Адрес порта	00000240	Выбор адреса порта: 1247.					
	СВЯЗИ	ЬАША	Скорость передачи	1.238.4	Выбор скорости передачи, кбит/с: 1,2; 2,4; 4,8; 9,6; 19,2; 38,4.					
		dAFU	Формат данных	n.8.1 n.8.2 E.8.1 o.8.1	 n.8.1 – без проверки (no), один стоповый бит; n.8.2 – без проверки (no), два стоповых бита; E.8.1 – проверка четности (even), один стоповый бит; o.8.1 – проверка нечетности (odd), один стоповый бит; 					

		Prot	Протокол обмена	RTU	Протокол передачи данных Modbus RTU зафиксирован
dEnA	Потребление	IEEĀ	Параметр потребления	IP	Параметры текущего потребления
		ñodE	Режим работы потребления	SLIP FI-I	Скользящий блочный режим Фиксированный блочный режим
		F	Время	00019999	Время скользящего блочного режима потребления
		пĿ	Время расчета	0000030	Коэффициент периода потребления
F. I .D I	Настройка тарифов для разных				
	периодов				
F2.01	Бремени	00.00	Время	P1P4	Выберите период времени и соответствующий тариф Р1,Р2, Р3, Р4.
 52 12					
F .ñon	Настройка ежемесячных тарифов	ñ .0 I~ñ . 12	Порядковый номер месяца	F1 или F2	Для каждого из 12 месяцев n01-n12 можно выбрать соответствующий период времени F1 или F2
СьРУ	День и время начала нового месяца	д.Н	День и время начала нового месяца	00.0028.23	День месяца и час в формате дд.чч, с которых начинается тарификация в новом месяце
EI ñE	Текущие	Y. ñ.	Текущие год и месяц	00.0099.12	Задание текущего года и месяца в формате гг.мм.
	дата и время	d. H.	Текущие день и час	00.0031.23	задание текущего дня месяца и времени суток в формате дд.чч.
		ñ. S.	Текущие минута и секунда	00.0028.23	формате мм.сс

4.7.3 Настройка параметров входных сигналов

На рисунке 4.4 приведен пример установки системных параметров измерительного модуля КСМ-М2. Выполнены следующие действия: установлен пароль 0112, включен циклический режим отображения, выбрана очистка счетчиков энергии.

Рисунок 4.4 Установка системных параметров

4.7.4 Настройка порта связи RS-485

На рисунке 4.5 приведен пример установки параметров порта связи (протокол Modbus RTU) прибора: адрес порта связи 12, скорость передачи 9600 бит/с, формат данных E.8.1 (проверка четности, один стоповый бит).

Рисунок 4.5 Настройка порта связи RS-485

5. Функции

5.1 Порт RS-485, протокол Modbus RTU

Приборы имеют цифровой порт связи типа RS-485, реализующий протокол Modbus RTU, с помощью которого можно проверять состояние приборов, просматривать измеряемые величины.

5.1.1 Физический уровень

• порт связи RS-485, асинхронный полудуплексный режим передачи данных;

• скорость передачи данных 1200, 2400, 4800, 9600, 19200, 38400 бод (по умолчанию установлена скорость 9600 бод);

• формат передачи данных: 1 стартовый бит, 8 битов данных, 0-1 контрольный бит и 1-2 стоповых бита (N81/O81/E81/N82) по выбору.

5.1.2 Протокол MODBUS-RTU

Modbus – коммуникационный протокол, который основан на клиент-серверной архитектуре и имеет высокую достоверность передачи данных, связанную с применением надежного метода контроля ошибок. Modbus позволяет унифицировать команды обмена благодаря стандартизации адресов регистров и функций их чтения/записи.

Протокол Modbus RTU использует для передачи данных последовательную линию связи и предполагает наличие в ней одного главного устройства, которое может передавать команды одному или нескольким подчиненным устройствам, обращаясь к ним по уникальному в линии адресу.

Инициатива проведения обмена всегда исходит от главного устройства. Подчиненные устройства прослушивают линию связи. Главное устройство подаёт запрос в линию и переходит в состояние прослушивания линии связи. Подчиненное устройство отвечает на запрос, пришедший в его адрес. Кадры запроса и ответа имеют фиксированный формат:

Адрес подчиненного устройства	Код команды	Данные	Контрольная сумма CRC
1 байт	1 байт	N < 255 (байт)	2 байта

Адрес подчинённого устройства – первое однобайтное поле кадра, содержащее уникальный адрес подчиненного устройства (от 1 до 247), к которому адресован запрос. Подчиненные устройства отвечают только на запросы, поступившие в их адрес. Ответ также начинается с адреса подчиненного устройства. Адрес назначается пользователем в меню настройки прибора.

Код команды – второе однобайтное поле кадра, указывающее подчинённому устройству, какие данные или выполнение какого действия требует от него главное устройство. Системами поддерживаются следующие команды:

Код команды	Описание
0x03/0x04	Чтение данных из регистра
0x10	Запись данных в регистры

Данные – поле, которое содержит информацию, необходимую подчиненному устройству для выполнения заданной главным устройством функции или содержит данные, передаваемые подчиненным устройством в ответ на запрос главного (число, адрес регистра памяти). Например, код команды требует считать данные из регистров памяти. В этом случае код команды указывает адрес начального регистра и количество регистров. В ответе подчиненного устройства содержатся запрошенные данные и их длина. Длина и формат поля зависит от кода команды.

Контрольная сумма CRC – заключительное двухбайтное поле кадра, завершающее кадры запроса и ответа. Во время обмена данными могут возникать ошибки, связанные с искажениями при передаче данных. На передающей стороне вычисляется контрольная сумма и добавляется в конец кадра (младший байт контрольной суммы передается первым). При приеме сообщения вычисляется СRC сообщения и сравнивается с его значением, указанным в поле CRC кадра. Если оба значения совпадают, считается, что сообщение не содержит ошибки.

5.1.3 Форматы сообщений поддерживаемых команд

Чтение данных из регистра (код команды 0х03 или 0х04)

				Дан		
	кадра	Адрес	Команда	Адрес начала	Кол-во	Код CRC
Запрос	Кол-во байтов	1	1	2	2	2
	Диапазон значений	1-247	0x03 или 0x04		макс. 48	CRC
	Пример	0x01	0x03	0x00 0x3D	0x00 0x03	0x79 0xC9
				Дан		
Ответ	кадра	Адрес	Команда	Длина данных	Значение	Код CRC
	Кол-во байтов	1	1	1	Ν	2
	Пример	0x01	0x03	0x06	6 байт	(CRC)

Примечание: адрес начального регистра в запросе – это адрес начального регистра группы чтения. Количество регистров – это количество читаемых регистров.

Например, в запросе адрес начального регистра 0x00 0x3D задает адрес начального регистра группы чтения. Количество регистров 0x00 0x03 предписывает считать 3 слова данных. Данные могут быть представлены как в основном формате с плавающей запятой, так и дополнительном формате.

Запись данных в регистры (код команды 0х10), N регистров.

		Команда			Дан			
	Структура кадра	Адрес	Команда	Адрес нач.	Кол-во регист.	Байт данны х	Данны е	Код CRC
Запрос	Кол-во байтов	1	1	2	2	1	2*N	2
	Диапазон значений	1-247	0x10					CRC
	Пример	0x01	0x0F	0x08 0x0A	0x00 0x01	0x02	0x00 0x64	0x2E 0xD1
					Данные			
Ответ	Структура кадра	Адрес	Команда	Адрес начала		Кол регис	1-во стров	Код CRC
	Кол-во байтов	1	1	2 2		2	2	
	Пример	0x01	0x10	0> 0>	(08 (0A	0x 0x	00 01	0x2E 0xD1

Примечание: адрес начала – адрес первого регистра, количество регистров – подряд идущие регистры, регистры должны быть записываемы (R/W). Запись в регистры только для чтения вызывает ошибку.

5.2 Импульснй выход

Прибор снабжен одним импульсным выходом счета энергии – выходом импульсов активной или реактивной энергии (в зависимости от настройки прибора) (клемма 47,48).

Рисунок 5.1 Импульсный выходы прибора

6. Способы их устранения

6.1 Связь

А) Прибор не отправляет данные

Убедитесь, что параметры связи прибора, такие как, адрес подчиненного устройства, скорость передачи, метод проверки соответствуют требованиям главного компьютера. Если несколько приборов, размещенных в одном помещении, не отправляют данные, проверьте правильность подключения контроллеров к шине связи и работоспособность конвертера порта RS-485.

Если неправильно работают только один или несколько приборов, то также необходимо проверить соответствующую шину связи. Также можно проверить, нет ли ошибки в главном компьютере, взаимно поменяв адреса работающего и неработающего приборов. Проверить правильность функционирования прибора можно, поменяв его местами с работоспособным прибором.

Б) Прибор отправляет неверные данные

Информация об адресах размещения данных и формате данных содержится в приложении 4. Убедитесь, что данные передаются в соответствующем формате. Для тестирования работы цифрового интерфейса RS-485 с протоколом Modbus RTU можно использовать программу Modscan. Программа способна отображать содержимое регистров памяти прибора в различных форматах (целочисленный, с плавающей точкой, шестнадцатеричной). Таким образом, можно сравнить полученные данные с теми, которые отображаются на индикаторе прибора.

6.2 Прибор не работает

Убедитесь, что прибор подключен к надлежащему источнику питания. Если параметры внешнего источника питания не соответствуют диапазону контроллера, то прибор может выйти из строя. С помощью мультиметра измерьте напряжение питания прибора. Если используется источник питания с допустимым напряжением и частотой, но прибор не работает, обратитесь в нашу сервисную службу.

6.3 Прибор не реагирует на ваши действия

Когда прибор не реагирует на нажатие кнопок на передней панели, отключите питание прибора. Если после повторного включения работоспособность не восстановилась, обратитесь в нашу сервисную службу.

6.4 Другие неисправности

Пожалуйста, свяжитесь с нашей сервисной службой и подробно опишите условия эксплуатации прибора. На основе этой информации наши специалисты проанализируют возможные причины неисправности и дадут рекомендации по ее устранению.

7. Техническое обслуживание и ремонт

Неисправный прибор или модуль может быть отремонтирован. По вопросам ремонта обращайтесь в компанию "Комплект-Сервис" или её уполномоченные сервисные центры.

8. Маркировка и пломбирование

На передней панели прибора нанесены:

- товарный знак «КС» (наверху слева);
- знак соответствия ЕАС (наверху справа)
- название модуля и наименование модификации.

На боковой или верхней стенке прибора имеется наклейка, на которой указаны основные параметры, а также:

- назначение выводов модуля;
- знак соответствия модуля требованиям безопасности;
- дата изготовления, штрихкод и серийный номер изделия.

Задействованные клеммы пронумерованы.

Прибор опломбирован неснимаемым стикером, который защищает корпуса от несанкционированного вскрытия.

9. Гарантии

Компания «Комплект-Сервис» гарантирует соответствие прибора изложенным в настоящем руководстве требованиям при соблюдении потребителем условий эксплуатации, транспортировки, хранения и монтажа. Гарантийные сроки указаны в паспорте модуля.

Нарушение сохранности наклейки, защищающей модули от вскрытия, является основанием для отказа в гарантийном обслуживании.

Гарантийное и послегарантийное обслуживание и техническую поддержку осуществляет сервисный центр компании «Комплект-Сервис» или её уполномоченные представители.

Сервисный центр ООО «Комплект-Сервис»

Россия, 125438, г. Москва, 2-й Лихачевский пер., д.1, стр. 11

Единый, бесплатный для звонков из России, телефон по вопросам гарантийного и послегарантийного обслуживания и технической поддержки: 8(800)200-20-63.